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Research in Computer Vision
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Deep Learning
in Computer Vision



How to teach a machine 7

classifier

o Person
/

(or any other hand-crafted features)
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How to teach a machine 7

(or any other hand-crafted features)
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What is deep learning 7

* Representation learning method
Learning good features automatically from raw data

* Learning representations of data with multiple levels of abstraction

Google’s cat detection neural network

Diagonal
Line
Node

“‘"

/.

- Al ! ~
T et o, NOQe

Caner Hazirbas | vision.in.tum.de Deep Learning in Computer Vision



Construction of higher
levels of abstraction
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Going deeper in the network

| Input’ 1st and 2nd Layers 3rd Layer 4th Layer
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Deep Learning Methods

Unsupervised Methods

* Restricted Boltzmann Machines
* Deep Belief Networks

* Auto encoders: unsupervised feature extraction/learning

“bottieneck” hidden layer

input layer output layer

(reconstruction of input layer)

all layers are fully connected but not
drawn
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Deep Learning Methods

Supervised Methods

* Deep Neural Networks
e Recurrent Neural Networks

e (Convolutional Neural Networks

Vision Language
Deep CNN Generating RNN
‘\ q A group of people
/.\ \ shopping at an outdoor
‘\ /. market.
O —_— —_—
‘/ \. -
~a— ere are many
/. vegetables at the
® fruit stand.
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How to train a deep network 7

Stochastic Gradient Descent — supervised learning

e show input vector of few examples

* compute the output and the errors

| 1(00,0,).
« compute average gradient

update the weights accordingly e
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Convolutional Neural Networks

e CNNs are designed to process the data in the form of multiple arrays
(e.g. 2D images, 3D video/volumetric images)

* Typical architecture is composed of series of stages: convolutional layers
and pooling layers

 Each unitis connected to local patches in the feature maps of the
previous layer
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Key ldea behinao
Convolutional Networks

Convolutional networks take advantage of the properties of natural signals:

e |ocal connections
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Key ldea behinao
Convolutional Networks

Convolutional networks take advantage of the properties of natural signals:

* |ocal connections * shared weights
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Key ldea behinao
Convolutional Networks

Convolutional networks take advantage of the properties of natural signals:

* |ocal connections * shared weights

* pooling
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Key ldea behinao
Convolutional Networks

Convolutional networks take advantage of the properties of natural signals:

e |ocal connections

* pooling
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* shared weights

e the use of many layers
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Pros & Cons

* Best performing method in many
Computer Vision tasks

e No need of hand-crafted features

* Most applicable method for large-
scale problems, e.g. classification
of 1000 classes

 Easy parallelization on GPUs

Need of huge amount of training
data

Hard to train (local minima problem,
tuning hyper-parameters)

Difficult to analyse (to be solved)
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Deep Learning Applications
in Computer Vision



Handwritten Digit Recognition

Caner Hazirbas | vision.in.tum.de Deep Learning in Computer Vision

20



ImageNet Classification with Deep
Convolutional Neural Networks (AlexNet)
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FlowNet: Learning Optical Flow
with Convolutional Networks

convolutional
hetwork

In collaboration with University of Freiburg
Imb.informatik.uni-freiburg.de
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FlowNet: Learning Optical Flow
with Convolutional Networks
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FlowNet: Learning Optical Flow
with Convolutional Networks

FlowNetSimple
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FlowNet: Learning Optical Flow
with Convolutional Networks
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FlowNet: Learning Optical Flow
with Convolutional Networks

P. Fischer, A. Dosovitskiy, E. llg, P. Hausser, C. Hazirbas, V. Golkov
P.v.d. Smagt, D. Cremers, T. Brox

FlowNet:

Learning Uptical Flow
with Gonvolutional Networks
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From Image to Caption

Vision Language

Deep CNN Generating RNN
‘\ q A group of people

/.\ \ shopping at an outdoor
.\ /‘ market.

. —_— —_—

~a There are many

/. vegetables at the
¢ fruit stand.

S
A dog is standing on a hardwood floor. A stop sign is on a road with a
mountain in the background

A little girl sitting on a bed with a teddy bear. A group of people sitting on a boat in the water. A giraffe standing in a forest with
trees in the background.
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 (Google’s cat detection neural network http://www.resnap.com/image-

selection-technology/deep-learning-image-classification/
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 SGD : http://blog.datumbox.com/tuning-the-learning-rate-in-gradient-

descent/
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