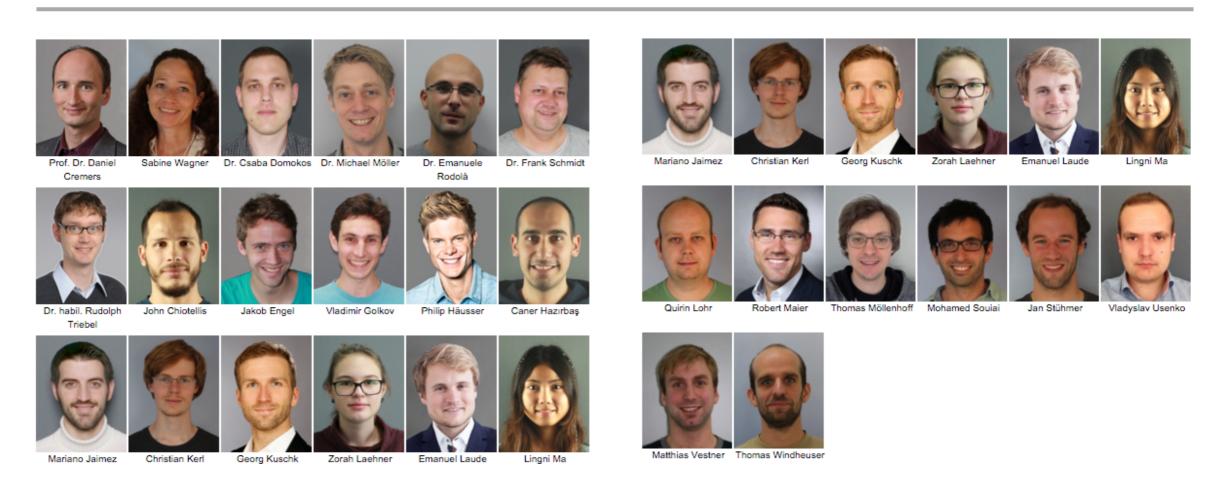
Convolutional Neural Networks for Computer Vision

Caner Hazırbaş

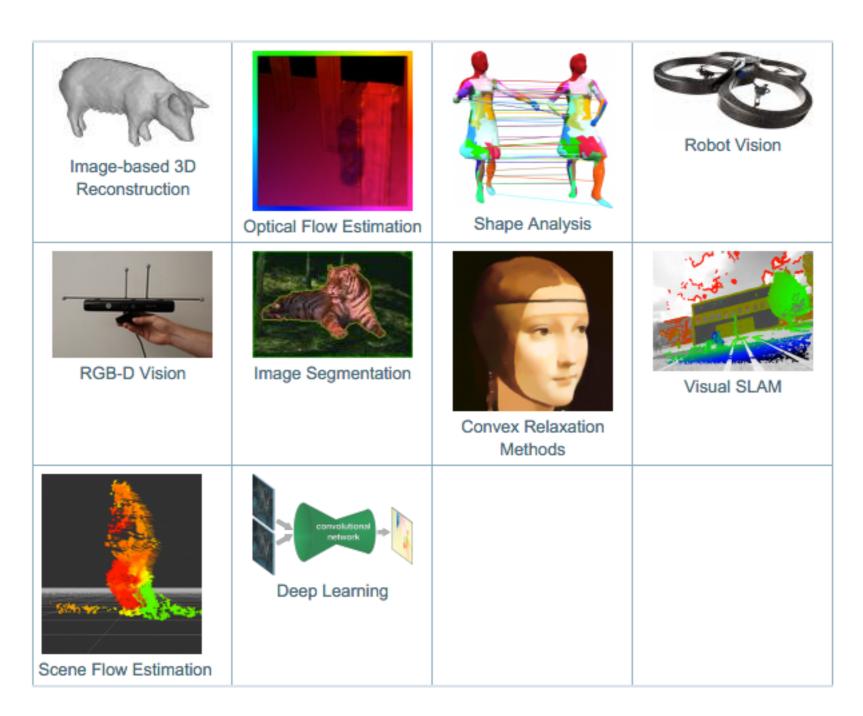
Centrum für Informations- und Sprachverarbeitung 24. November '15

Computer Vision Group



5 Postdocs, 24 PhD students

Research in Computer Vision

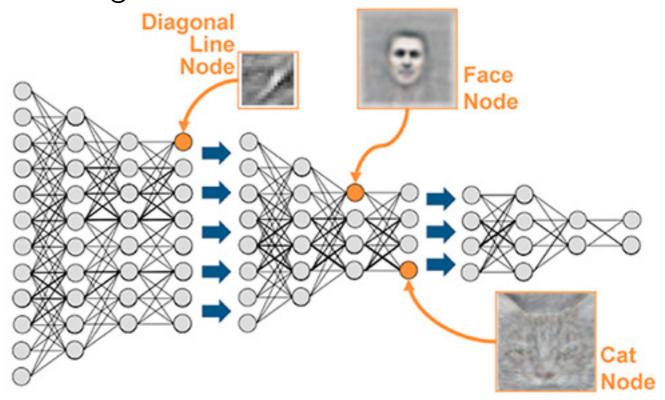


Convolutional Neural Networks for Computer Vision

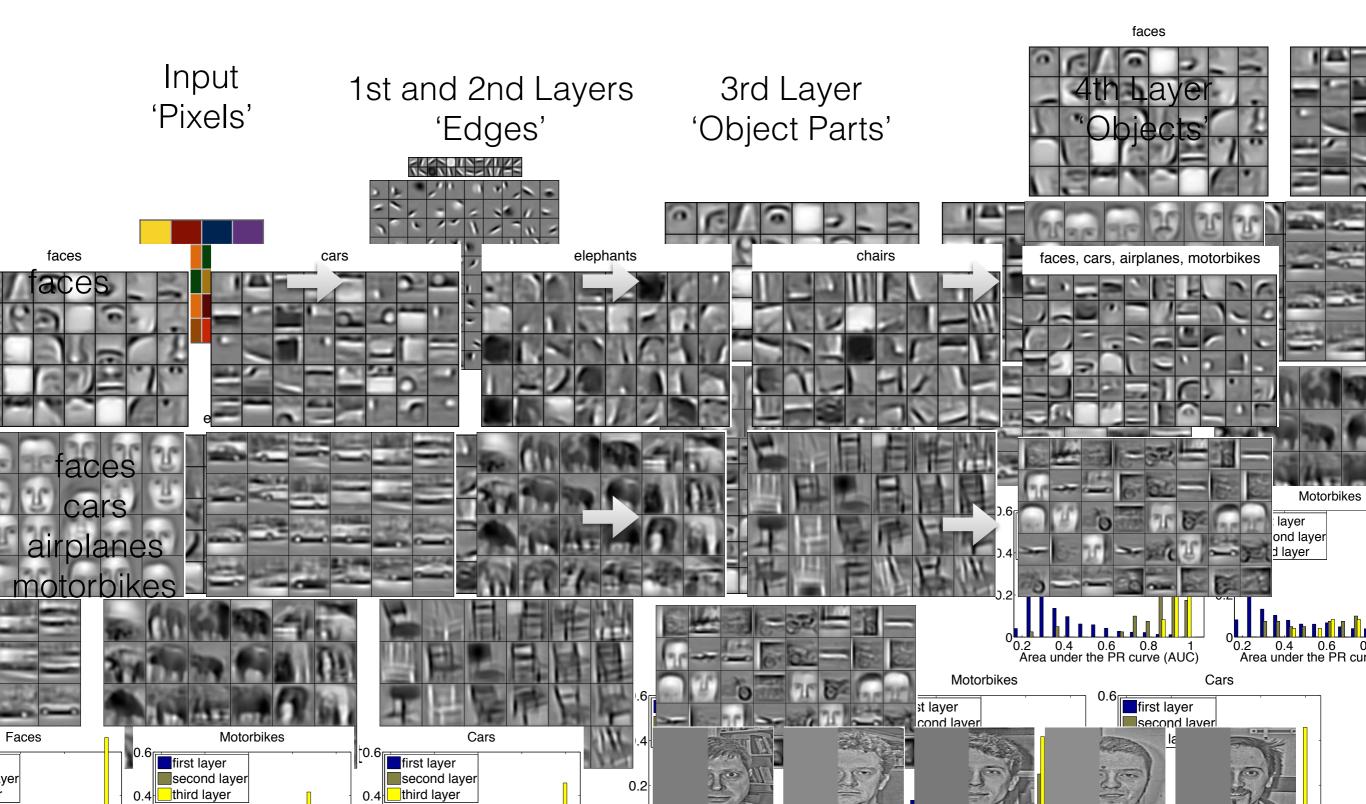
What is deep learning?

- Representation learning method
 Learning good features automatically from raw data
- Learning representations of data with multiple levels of abstraction

Google's cat detection neural network



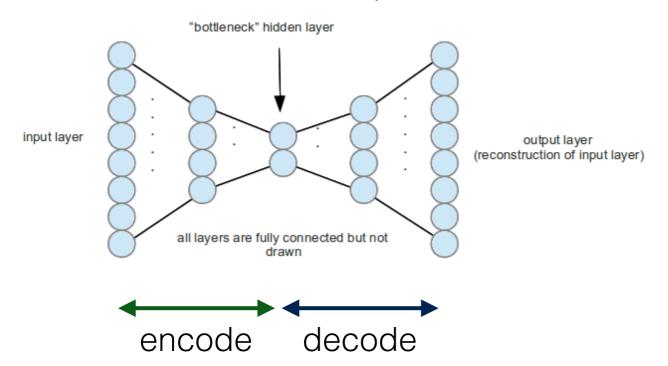
Going deeper in the network

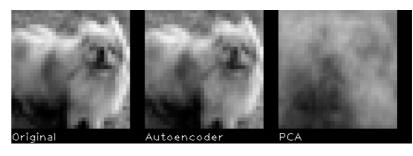


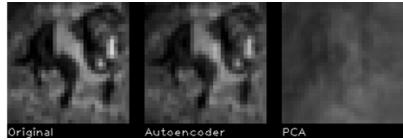
Deep Learning Methods

Unsupervised Methods

- Restricted Boltzmann Machines
- Deep Belief Networks
- Auto encoders: unsupervised feature extraction/learning



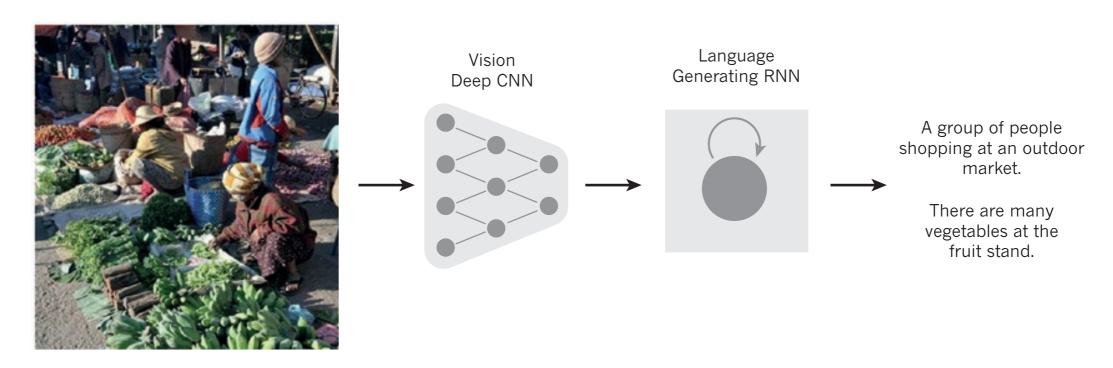




Deep Learning Methods

Supervised Methods

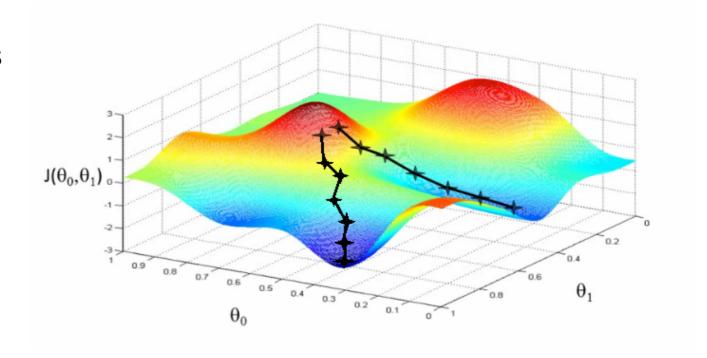
- Deep Neural Networks
- Recurrent Neural Networks
- Convolutional Neural Networks



How to train a deep network?

Stochastic Gradient Descent — supervised learning

- show input vector of few examples
- compute the output and the errors
- compute average gradient
- update the weights accordingly



How to train a deep network?

Alternatives:

- AdaGrad, AdaDelta, NAG (Nesterov's Accelerated Gradient)...
- **ADAM** (now in Caffe http://caffe.berkeleyvision.org/tutorial/solver.html)

 The Adam is a gradient-based optimization method (like SGD). This includes an "adaptive moment estimation" (mt,vt) and can be regarded as a generalization of AdaGrad. The update formulas are:

$$(m_t)_i = \beta_1(m_{t-1})_i + (1 - \beta_1)(\nabla L(W_t))_i,$$

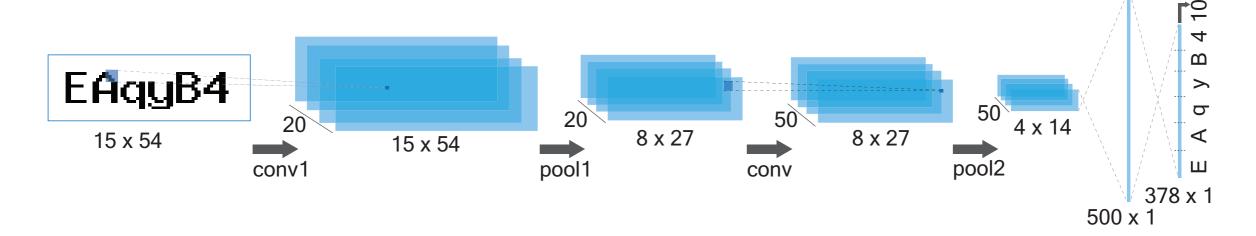
$$(v_t)_i = \beta_2(v_{t-1})_i + (1 - \beta_2)(\nabla L(W_t))_i^2$$

$$(W_{t+1})_i = (W_t)_i - \alpha \frac{\sqrt{1 - (\beta_2)_i^t}}{1 - (\beta_1)_i^t} \frac{(m_t)_i}{\sqrt{(v_t)_i} + \varepsilon}.$$

D. Kingma, J. Ba. Adam: A Method for Stochastic Optimization. International Conference for Learning Representations, 2015

Convolutional Neural Networks

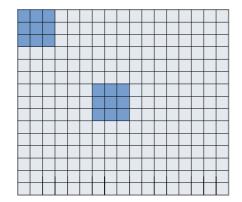
- CNNs are designed to process the data in the form of multiple arrays (e.g. 2D images, 3D video/volumetric images)
- Typical architecture is composed of series of stages: convolutional layers and pooling layers
- Each unit is connected to local patches in the feature maps of the previous layer



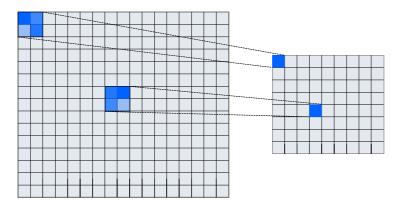
Key Idea behind Convolutional Networks

Convolutional networks take advantage of the properties of natural signals:

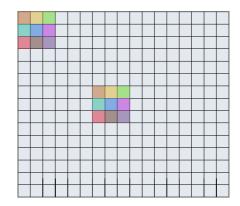
local connections



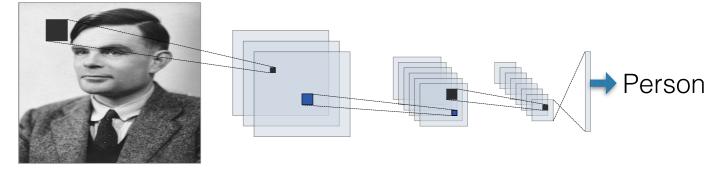
pooling



shared weights

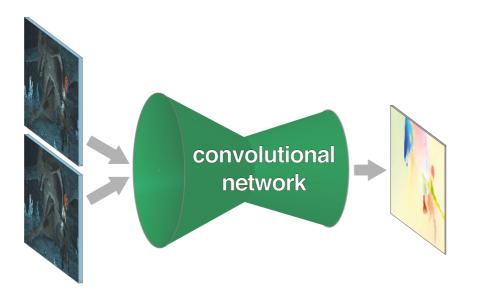


the use of many layers

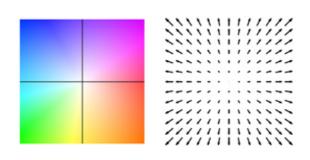


FlowNet: Learning Optical Flow with Convolutional Networks

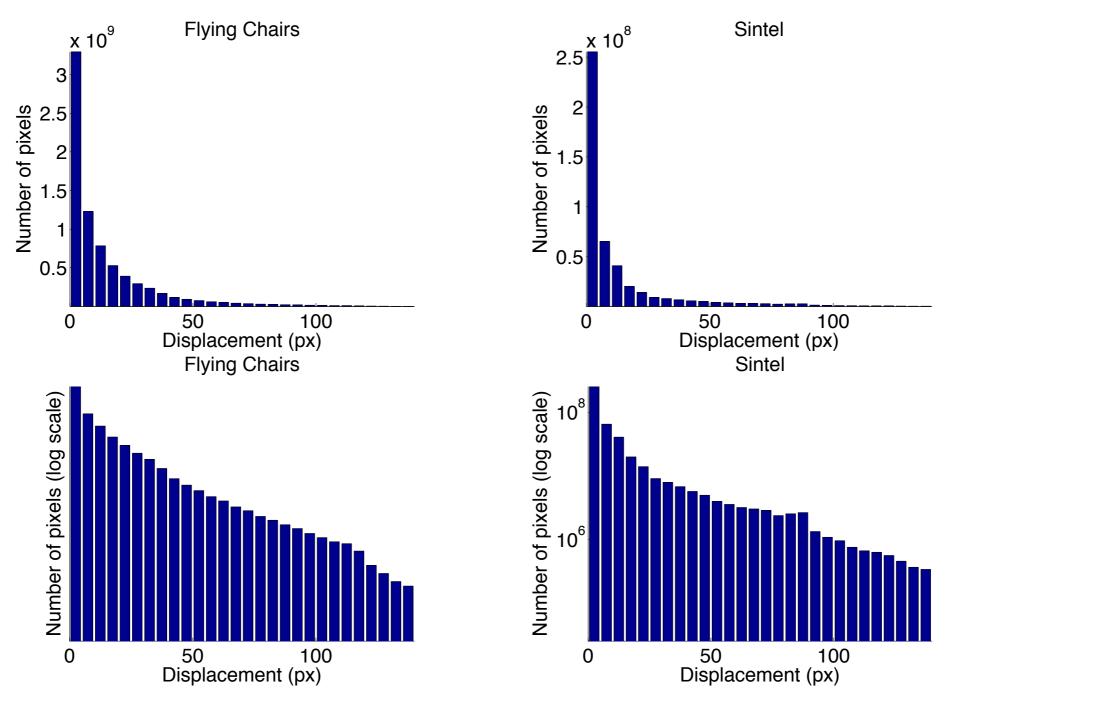
Philipp Fischer, Alexey Dosovitskiy, Eddy Ilg, Thomas Brox Philip Häusser, Caner Hazırbaş, Vladimir Golkov, Daniel Cremers, Patrick van der Smagt



Flying Chairs



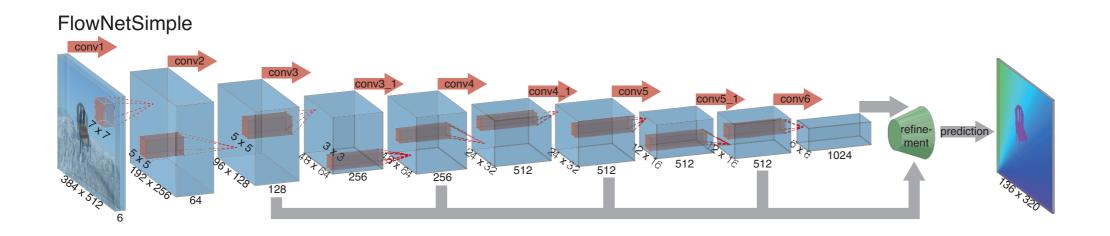
Flying Chairs

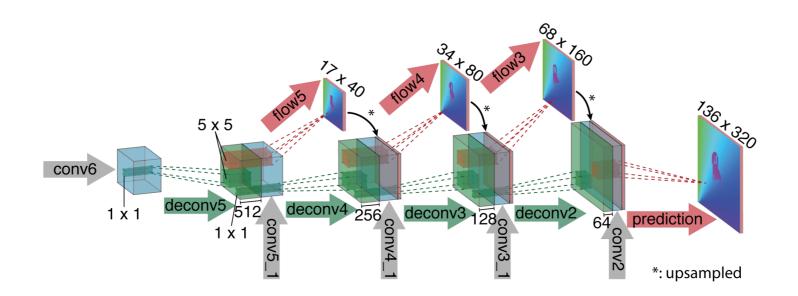


Data Augmentation

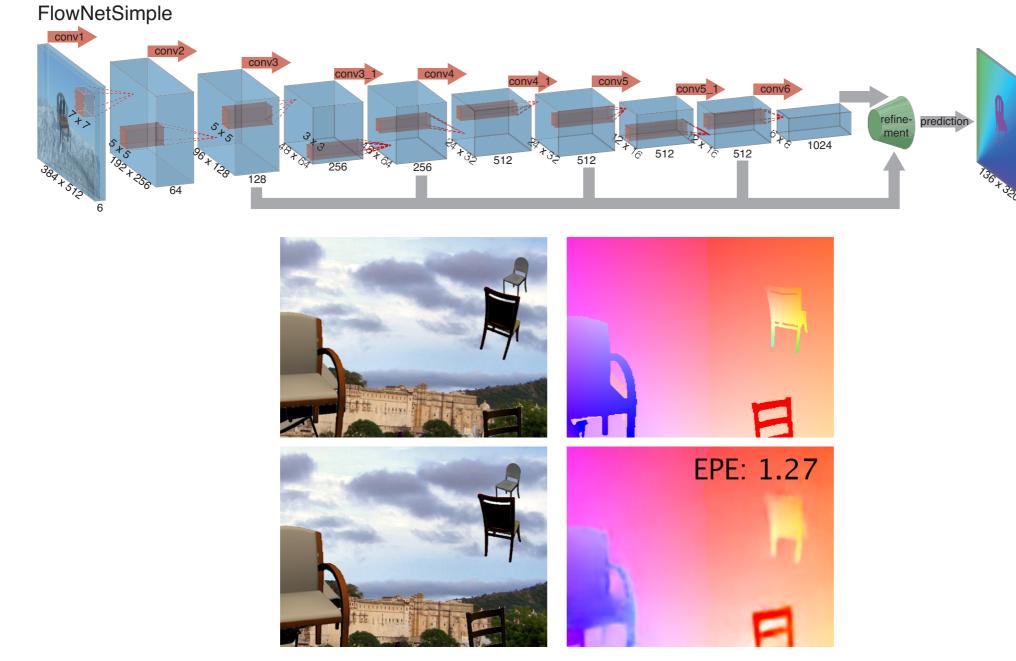
- translation, rotation, scaling, additive Gaussian noise
- changes in brightness, contrast, gamma and colour

FlowNetSimple

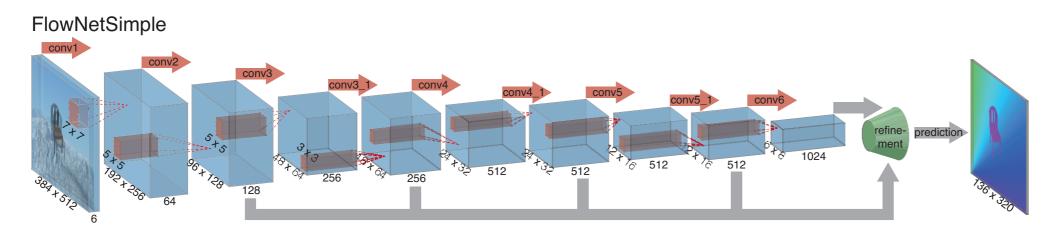




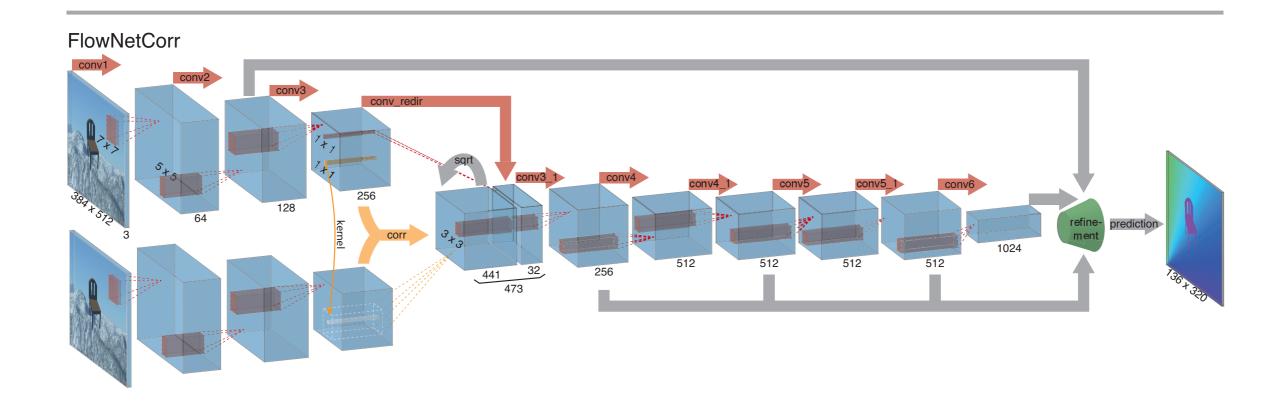
FlowNetSimple - Flying Chairs



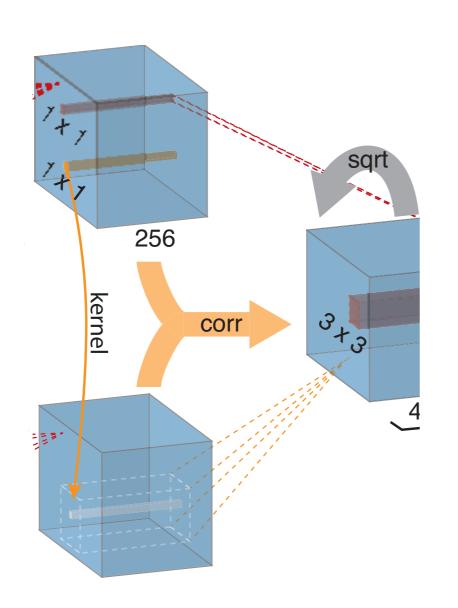
FlowNetSimple - Sintel

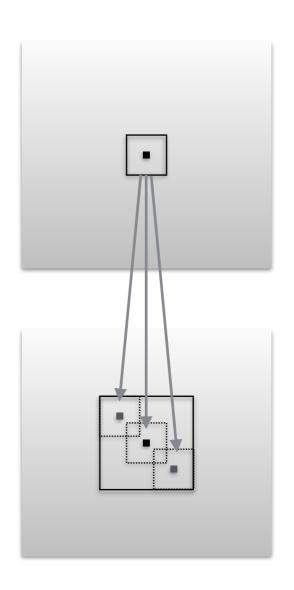


FlowNetCorr

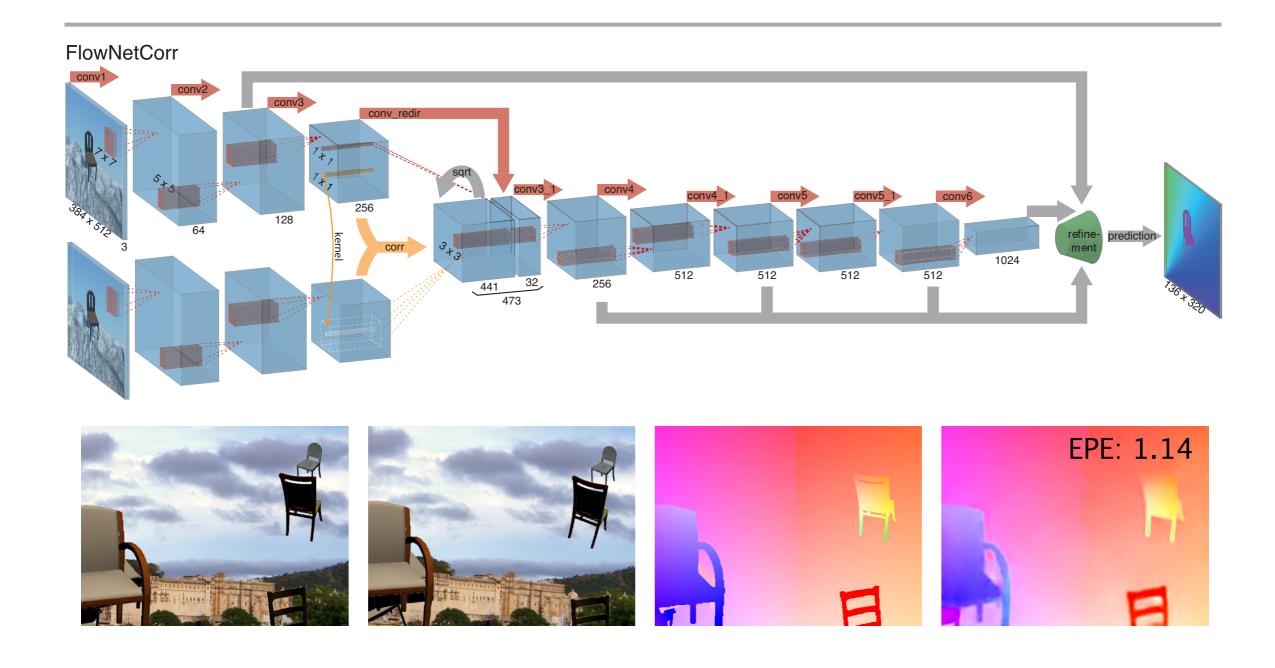


Correlation Layer





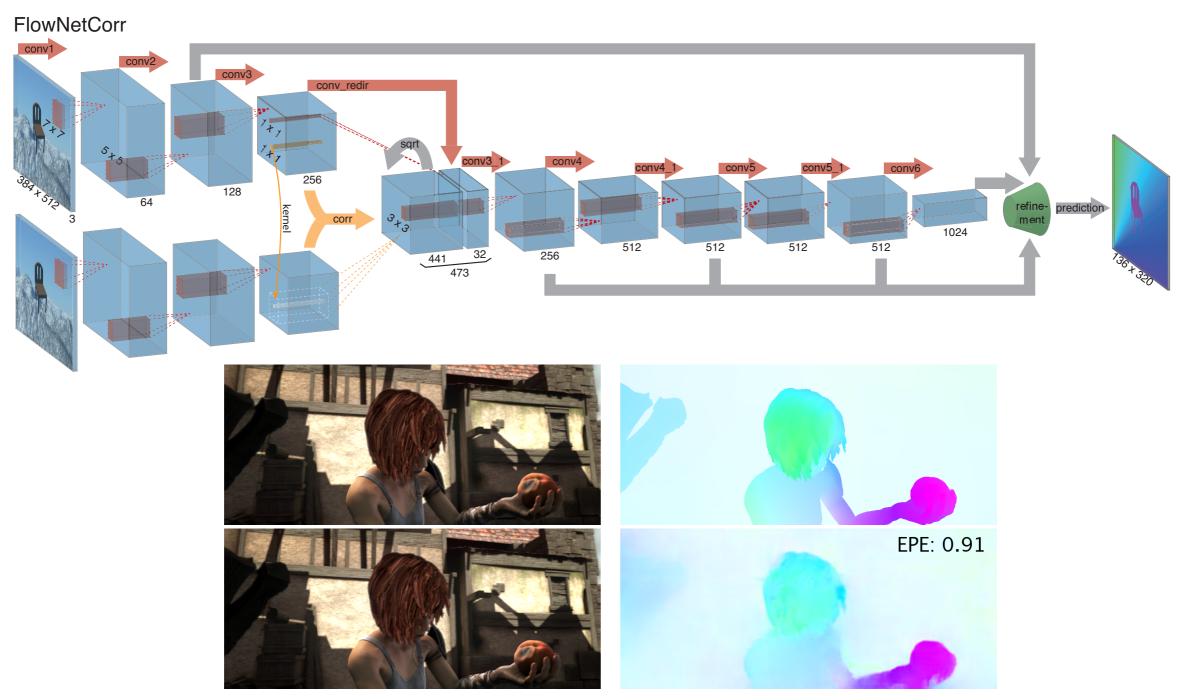
FlowNetCorr - Flying Chairs



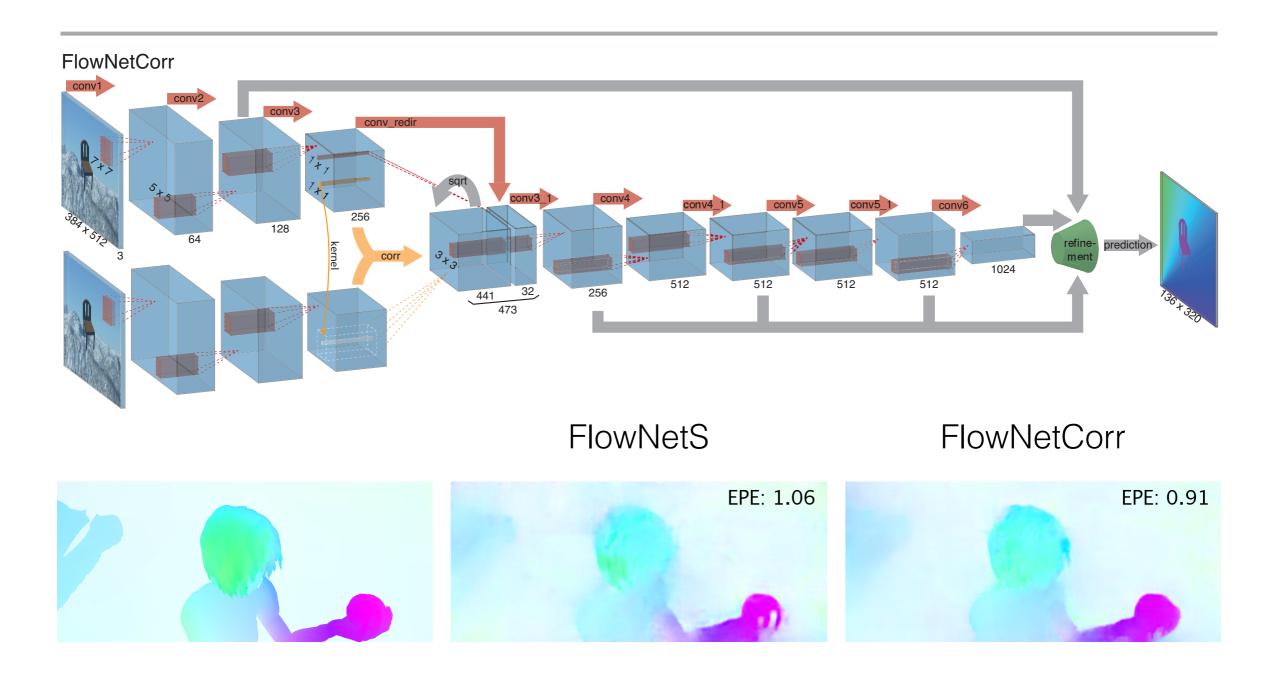
Simple vs. Corr - Flying Chairs



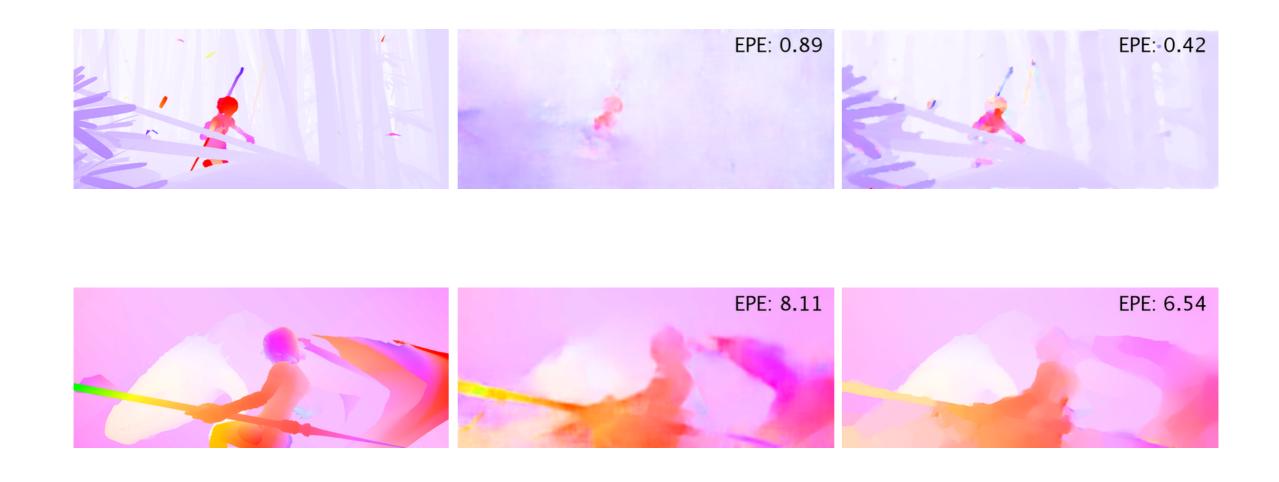
FlowNetCorr - Sintel



Simple vs. Corr - Sintel



FlowNetSimple + Variational Smoothing



FlowNet: Learning Optical Flow with Convolutional Networks

P. Fischer, A. Dosovitskiy, E. Ilg, P. Häusser, C. Hazırbas, V. Golkov P. v.d. Smagt, D. Cremers, T. Brox

FlowNet: Learning Optical Flow with Convolutional Networks

References

- Building High-level Features Using Large Scale Unsupervised Learning
 Quoc V. Le, Rajat Monga, Matthieu Devin, Kai Chen, Greg S. Corrado, Jeff Dean, Andrew Y. Ng
 ICML'12
- Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations Honglak Lee Roger Grosse Rajesh Ranganath Andrew Y. Ng ICML'09
- ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton NIPS'12
- Gradient-based learning applied to document recognition.
 Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner Proceedings of the IEEE'98
- FlowNet: Learning Optical Flow with Convolutional Networks
 Philipp Fischer, Alexey Dosovitskiy, Eddy Ilg, Philip Häusser, Caner Hazırbaş, Vladimir Golkov, Patrick van der Smagt, Daniel Cremers, Thomas Brox

References

- Google's cat detection neural network http://www.resnap.com/image-selection-technology/deep-learning-image-classification/
- Example auto-encoder : http://nghiaho.com/?p=1765
- SGD: http://blog.datumbox.com/tuning-the-learning-rate-in-gradient-descent/